生命科學的發展和生物分子感測及分析技術的發展息息相關,舉例而言,眾所皆知許多人體疾病是肇因於體內的荷爾蒙(hormones) 或是蛋白質(proteins) 微量上的變化(數pico,10-12,莫爾甚或數百femto, 10-15,莫爾),或是濃度上的不平衡所導致,這些基本生理的現象使得快速而正確地檢測生物分子的方法對於分析及監測人體的健康及環境的安全是不可或缺的[1]。然而,現今使用的高精準生物分子分析技術,其儀器不但昂貴、複雜,而且需要大量的人力及時間來進行檢測工作[2];另一方面,標準的臨床生物分子量測技術:酵素連結免疫分析(Enzyme-Linked Immunosorbent Assay, ELISA)[3],因為無法達到適當的敏感度(sensitivity), 所以在量測低濃度的生物分子時,需要事先純化的步驟使待測分子濃度增加以利檢測。這些因素使得醫療及照護相關產業,無法達到其所期望的早期發現、早期預防及治療的目標, 因此,如何發展在成分複雜的檢體中以最少的準備步驟(simple)實現高選擇性(high selectivity) 、高敏感度(high sensitivity)及快速檢測的檢測方法,將是生物分子檢測技術的一大挑戰。
於生物體中,不同的生物分子即具有不同的功能,有的可以輸送養分、有的可以轉化能量、有的可以催化反應或是傳送生物訊號等,最重要的是,大部分掌管重要生物反應的生物分子,皆具有與其共軛分子(bio-conjugate molecules) 的特定結合特性(specific binding),利用此一特性,即可發展出多樣化的生物分子感測技術。舉例而言,現行標準的臨床生物分子檢測技術ELISA 即是利用此一特定結合特性,先將檢體中待測的生物分子染上螢光劑,並將其共軛分子塗佈於檢驗玻片上後,把檢體放入以佈有共軛分子的檢驗試片中,利用如(圖一)的螢光顯微鏡進行觀察,並依據其螢光強度判斷此一待測分子的對應濃度。然而,如前文所述,此一方法受限於螢光顯微鏡中光感測器(photo-detector) 的靈敏度(sensitivity),及光感測器相關介面電路(interface circuit)的訊雜比(signal-to-noise ratio),使得此一標準之臨床技術無法對於低濃度的生物分子直接進行檢測,而需要可以進一步提高待測分子濃度的前置作業(pre-concentration),近年來雖然因為電子技術的精進而使其可檢測最低濃度達到數十pico 莫爾濃度,但是仍然不敷所需。為了克服此一困境,研究學者們發展了數種不同的檢測方法以追求低成本、高靈敏度及快速檢測,本文將就現在各研究學者們發展的成果作一簡單的回顧介紹。
奈米顆粒技術
...
...
使用者別 |
新聞閱讀限制 |
文章閱讀限制 |
出版品優惠 |
一般使用者 |
10則/每30天 |
0則/每30天 |
付費下載 |
VIP會員 |
無限制 |
25則/每30天 |
付費下載 |